row i, thus unassigning the row k previously assigned to column j. Clearly, row i can
now be reduced by its minimum reduced costs, but if the second minimum is higher,
reduction transfer is possible by increasing the elements in column j. If so, we next
consider row k, as for this row the minimum reduced costs may now occur in a
column different from j. If this is the case, the alternating path is extended as before.
If not, and furthermore the minimum is still unique, the path may even reverse
direction, and be extended by rows and columns visited before. The process is
continued until either an additional assignment is found, or no reduction transfer
takes place. :

The two previous reduction procedures both have computational complexity O (n?).
It can be shown that for augmenting reduction at most O (n* - R) stéps are taken,
with R the range of the cost coefficients. With each step involving O (n) operations,
the complexity is at most O (n® - R). A different argument is as follows. We determine
O (n) alternating paths. Each extension of a path takes O (1) operations. So, an O (n*)
computational complexity is obtained by simply allowing no more than n path
extensions. In practice the procedure never even approaches this number of
extensions.

Computational experiments show best results when the procedure of augmenting
row reduction is performed twice.

The advantages of this initialization strategy over standard column and row
reduction amply compensate the additional computation time. On full density
problems with n= 100 average total time has been decreased by 10%;, (on cost range
1—100) to 18% (on 1 — 1000). This initialization phase takes 60%; to 709 of total run
time, whereas simple column and row reduction would take about 20%;,. We expect
the effect of these initialization routines to be larger on augmentation approaches
less efficient than ours. Table1 illustrates the advantages. It gives the average
reduction sum (the value of the current dual solution) and the average number of
assignments in the partial primal solution. These figures indicate how much effort
must still be put in the augmentation phase of the algorithm. The increased average
numbers of zero reduced costs coefficients suggest that this method is also useful for
assignment algorithms based on maximal flow.

Table 1. Column and row reduction compared to the initialization in LAPJV
(averages for 25 problems of each type with n=100)

¢ column and initialization
cost range row reduction in LAPJV
reduction sum 1-100 87.2 96.6
in % of optimum 1-1000 87.2 98.0
number of 1-100 75 90
assignments 1-1000 75 95
number of zero reduced 1-100 188 205
cost coefficients 1-1000 142 162

5. The Augmentation Phase

Augmentation starts by finding an alternating path. This is a sequence of,
alternately, row and column indices, with the first an unassigned row, the last a
column, and the intermediate columns and rows assigned in successive pairs. If the
final column is unassigned, augmentation of a partial solution can take place along
such a path by assigning all rows in the path to their succeeding column, which
results in one more assignment. 4

Augmentation in shortest path based algorithms (step 3, in Section 3) can best be
described without direct reference to the underlying minimum cost flow problem. It
requires only a simple modification of the shortest path method of Dijkstra [12]. In
Fig.3 we give two procedures. Dijkstra’s algorithm SHPATHI1 determines a
shortest path tree rooted in node kk and traceable in the pred-array. The set A [i]
contains all nodes j for which arc {i,j) exists. Procedure SHPATH-AUGMENT is
its modification for the assignment problem, which determines the shortest
augmenting path for one additional assignment in row kk.

procedure SHPATH 1 (kk);
begin
TOSCAN:={1...n}—{kk}; for j:=1...ndo d[j]:=c0;
i:=kk; d[kk]:=0; u:=0;
repeat
for all je A[i] n TOSCAN do
if p+c[i,j]1<d[j] then begin d[j]:=pu+c[i,j]; pred[f]:=i end;
pi=o0;
for all je TOSCAN do if d [j]<pu then begin u:=d[j]; i:=j end;
TOSCAN:=TOSCAN — {i}
until TOSCAN={}
end.

procedure SHPATH-AUGMENT (kk);
begin
TOSCAN:={1...n}; for j:=1...ndo d[j]:=00;
i:=kk; d[kk]:=0; u:=0;
repeat
for all je A[i] n TOSCAN do
if p+cred [i,j] <d[j] then begin d[j]:=u+cred[i,j]; pred [j]1:=i end;
pi=00;
for all je TOSCAN do if d[j] <pu then begin pee=d[j]; uj:=j end;
i:=y[ujl; TOSCAN:=TOSCAN — {1}
until y [uf]=0;
<augment along the path from column yuj to row kk>
end.

Fig.3. A shortest path algorithm according to Dijkstra and a modified version for augmentation in
assignment algorithms

This procedure only describes the method. For the actual implementation an
adapted version of Dijkstra’s shortest path algorithm as in Fig. 4 is to be preferred.
The shortest path algorithms in Figs. 3 and 4 differ in the use of a set SCAN,
containing all rows that can be scanned for the current minimum d-value (the



