begin
if h<min then begin up:=1low; min:=h end
col[k]:=col [up]; col [up]:=j; up: =up+1
end
end;
for h:=low to up—1 do
begin j:=col [k]; if y[[]=0 then goto augment end
end; {up=1low}
jl:=col[low]; low:=low+1; i:=y[j1];
ul:=c[i,j1]—v[j1]—min;
for k:=up to n do
begin
ji=col[k]; h:=c[i,j1—v[]— ul; i
if h<d[f] then e
begin '
d[j1:=h; pred {j]: =i;
if A=min then
if y[j1=0 then goto augment
else begin col [k]:=col [up]; col [up):=j; up:=up+1 end

# # scan a row)}

end
end

until false; {repeat ends with goto augment)}
augment:
for k:=1 to last do

1t {# # updating of column prices
beg1n11:=col[k];v[il]:=v[i1]+d[il]—min end; P }

repeat { i
” # 4 augmentat:
i=pred [J1; y[j):=i; k:=j; ji=x[i]; x[i): =k mentation]
until i=il

end; {of augmentation}

h:=.f); o {# # # # DETERMINE ROW PRICES AND OPTIMAL VALUE}
for.t.=1 to n do begin j:=x[i]; u[i}:=c[i,j1—v [j1; h:=h+ulil+v[f] end;
lapjv:=h ’

end

Fig. 6. Pascal function for the linear assignment algorithm LAPJV

8. Computational Results

We compare our algorithm LAPJV with several other methods, both on dense and
on sparse problems. The computational results are for Fortran codes run on a CDC
Cyber 750 (with OPT =2), but the algorithms were developed in Pascal on personal
computers (Apricot PC and F 1, Olivetti M 24). Running times on these computers

are typically between 2 and 4 seconds for full dense problems of size 100, using
Borland’s Turbo Pascal compiler (version 3.0).

The classical Hungarian code of Silver [27] isan intermediary for a comparison with
the‘shortest path based algorithm of Hung and Rom [18]. They give the ratio of
their computing times to those of the Silver code translated into Fortran. Dividing
the same ratios for LAPJV by those published by Hung and Rom shows that on
problems of full density our algorithm is about twice as fast (Table 2).

Table 2. Computation times of LAPJV divided by those of Hung and Rom

i range of cost coefficients

1-100 1-1000
50 34 w b OgER
= ‘ 2t AL g goieo 920

- - - — O e

We left primal simplex methods out of consideration, as the literature shows that
these are outperformed by several other methods. The algorithm of Hung and Rom
is “about twice as fast” as that of Barr, Glover and Klingman [2], which is one of the
best primal simplex methods. Glover confirmed this in a private communication.
Carpaneto and Toth [6] compare the same primal simplex method with their
Hungarian code for sparse problems SPASS and with a Tomizawa based method,
adapted from a code in Burkard and Derigs [4]. Both algorithms are faster by some
margin. Finally, the Hungarian method as implemented by McGinnis {25] is
“roughly comparable in solution speed”, but in an addendum he improves his
method to a much faster one.

The computation times of LAPJV in Table 3 are averages for ten full density
problems, compared to those of the algorithms:

— ASSCT: O (n*) Hungarian method coded by Carpaneto and Toth [5], making
extensive use of pointer techniques to locate zero valued reduced costs,

— LSAP: Dorhout’s improved version of Tomizawa’s algorithm [10, 11] translated
into Fortran and published by Burkard and Derigs [4],

— ASSIGN: the algorithm of Bertsekas [3], as made available by the author and
adapted for full density costs matrices.

Table 3. Computation times for assignment problems of full density (in ms)

cost LAP algorithm
range ASSCT LSAP ASSIGN LAPJV

1-100 50 51 32 22 15
100 149 168 114 64

150 283 535 256 179

200 420 1363 520 323

1—1000 50 121 30 24 17
100 637 165 123 77

150 1447 456 364 225

200 2217 850 665 406

1—10000 50 145 31 28 25
100 1085 168 134 103

150 3562 453 410 259

779 456

200 6989 919




