variable p). The set may be updated while scanning, and (relatively expensive)
searching for a new value of the minimum does not take place until SCAN is empty.
Especially for sparse networks this leads to substantially lower computation times.

procedure SHPATH 2 (kk);
begin
TOSCAN:={1...n}—{kk}; for j:=1...ndo d[]:=o0; )
d[kk]}:=0;"SCAN:={kk}; u:=0; : :
repeat
select any ie SCAN; SCAN:=SCAN - {i};
for all je A[i] n TOSCAN do if u+c[i,j]1<d[j] then K
begin ; :
d[j]:=p+cli,j}; pred [j1:=i;
if d{j]J=p then begin SCAN:=SCAN+ {j}; TOSCAN: TOSCAN {j} end
end;
if SCAN={} then
begin
u:=min {d[i] } je TOSCAN; d[j1>u};
for je TOSCAN do if d[j]=pu then SCAN:=SCAN+ {j};
TOSCAN:=TOSCAN —SCAN
end
until SCAN =
end.

Fig. 4. Modified version of Dijkstra’s shortest path method, basis for improved augmentation

Augmentation in our LAP algorithm is given by the procedure AUGMENT in
Fig. 5, which is based on SHPATH?2. Some minor improvements have been made.
Instead of a list SCAN containing rows, a list of columns facilitates updating of
column prices. Furthermore, we do not keep and update row prices. These can be
determined easily when needed due to complementary slackness. Updating of
column prices takes place as will be discussed in Section 6.

The column sets READY, SCAN and TODO are mutually disjoint, and
READY U SCAN LU TODO=/{1 ... n}. So in the code one array COL of length n is
sufficient, with the elements of READY kept in front, just before the elements of
SCAN. This set is scanned first-in-first-out. So, its elements transfer automatically
to READY. The remaining places in the array are used for TODO.

Just like the initialization, the augmentation phase has computational complexity
O (n®). So this also holds for the entire algorithm. As for the memory requirements:
the full density version uses a costs matrix and eight arrays of n elements.

Derigs and Metz [8] investigated implementations of Dijkstra’s shortest path
algorithm in assignment methods. The fastest implementation turned out to be very
similar to ours. They discovered that in their algorithms it is advantageous to
determine complete shortest path trees, so that more than one augmenting path per
iteration may be found. Our algorithm is faster when in each iteration only one
augmenting path is determined, which is probably due to the extensive initialization
procedures.

procedure AUGMENT;
begin
for all unassigned i* do
begin
for j:=1...n do begin d[j]:=c[i*,j1—v[j]; pred [[1:=i* end;
READY:={}; SCAN:={}; TODO:={1...n};
repeat
if SCAN={} then
begin
p=min {d[j]|je TODO}; SCAN:={j|d[j]=u}; TODO:=TODO-SCAN
for all je SCAN do if y[j]=0 then go to augment
end;
select any j* € SCAN; i:=y[j*]; SCAN:=SCAN — {j*}; READY:=READY + {j*}
for all je TODO do if u+cred [i,j]<d[j] then
begin ‘
d[j]:=p+cred[i,j]; pred[j1:=i;
if d[j]=p then
if y [f]1=0 then go to augment else
begin SCAN:=SCAN+ {j}; TODO:=TODO — {j} end
end
until false; (* repeat always ends with go to augment *)
augment:
(* price updating *)
for all ke READY do v[k}:=v[k)+d[k]—u;
(* augmentation *)

repeat
ii=pred[j1; y[1:=i; k:=j; j:=x[i]; x[):=k
until i=i*
end

end.

Fig. 5. The procedure AUGMENT for augmentation in the algorithm LAPJV

We experimented with augmentation based on the new shortest path methods from
Glover et al.[15, 16]. However, we did not find a faster procedure than one based on
SHPATH?2. Carraresi and Sodini [7] report very good results with an algorithm
based on these shortest path methods. It must be noted that this LAP algorithm
performs well only on (very) sparse problems. Karp [21] also improved shortest
path based algorithms, but his modifications are more theoretically interesting than
practically. By using priority queues, he reduced expected running time for the LAP
to O (n?* - logn). -

6. Adjustment of the Dual Solution
After augmentation of a partial assignment the values of the dual variables must be
updated to restore complementary slackness, that is,
' cli,k]—uli]l—v[k]=0, ifx[iJ=k (i=1...n), 4}
c[i,j1 —ulil—v [/1=0 (,j=1...n). )
Substituting the values u[i] from (1) in (2) leads to:
cli,k]—vlkl<c[i,j1—v[j] G=1...n).



