So, all assignments in the (partial) solution must correspond to row minima in the
reduced costs matrix. This simple observation is useful in the update step of shortest
path based algorithms. The price v [k] of every assigned column k (with y[k]=1i)
must be adjusted so that

cli,k]—v[k]=min {c[i,j1-v[]]|j=1...n}.

In the procedure AUGMENT (Fig. 5) this is achieved just before augmentation
actually takes place. Where necessary, column entries in the reduced costs matrix
are increased by decreasing the current column prices v [j] (j=1...n) by u—d [j] if
d[j]<p,so that u is the minimum value in row kk. The corresponding values of u H|
with i=y[j] must be increased by the same amount. The d-values and u are
obtained from the modified shortest path procedure, clarifying the fole of the d [f]
(j=1...n) in the procedures SHPATH-AUGMENT and AUGMENT.

7. A Pascal Implementation

In Fig. 6 we present a Pascal code for the algorithm from the previous sections. We
suppose integer valued costs ¢ [i,j] (i,j=1 ... n), but the code is easily adapted for a
real valued costs matrix. The type “mat”.is an integer n x n matrix, and the type
“vec” an integer array of length n.

Listings of the Fortran code for dense LAPs and of the Pascal and Fortran code for
sparse LAPs can be obtained from the authors on request.

function LAPJV (n: integer; c: mat; var x, y,u,v: vec): integer

{n: problem size;

: costs matrix;

: columns assigned to rows;
: rows assigned to columns;
: dual row variables;

: dual column variables}

S R X o

label augment;

const inf=1000000; {inf is a suitably large number}

var f,h, i,j,k, £0,i1,j1,j2,ul,u2, min, last, low, up: integer;
col, d, free, pred: vec;

{col: array of columns, scanned k=1..low— 1),
labeled and unscanned (k=low...up—1),
unlabeled (k=up...n);

d: shortest path lengths;
free: unassigned rows (number £0, index s
pred: predecessor-array for shortest path tree;
i,il: row indices; j, j1,j2: column indices;.
last: last column in col-array with d [j] <min.}
begin
for i:=1 to n do x[{):=0;

A Bhorlesl AVEMETUNE FALD AIEOFIANY [0 LADTss il 9 jtisa

{4 # % # COLUMN REDUCTION

I..-| .| ! IH"“ i 0T [T = b then began =[] 11:=i end

! # # # # REDUCTION TRANSFER}
r e[if=1 '- . { # # unassigned row in free-array}

{ # # no reduction transfer possible}
] clse = # reduction transfer from assigned row}

Wl] I then
Wl | | == min thew mi L6 =rly
[it]=v 1] = mun

1 == = = AUGMENTING ROW REDUCTION}

ii=free (K] =k+ 1 0l r=c{i vl 1] =1: u2:=inf;

I =wlil]!
ul=ulthen r{jl]l:=v[iT]—-ul+un
| = 1¥ then bepr 12§ w117 end;
i I+ thien
ol <eudithen beam b=k —1; free[k]: =il end
TP

—

: {# # routine applied twice}
fili=/ {# # # # AUGMENTATION}

{ T {# # initialize d- and pred-array}
foe dz=1 10 do LRTE]| [l =v] pred [1]: =il end;

il wp = low the # 4t find columns with new value for minimum d}

st lovww —1; mun ol [wpl]; vpz=up+

(L) Inin e

